
NWERC 2016
Presentation of solutions

The Jury

2016-11-20

NWERC 2016 solutions



NWERC 2016 Jury

François Aubry (Université catholique de Louvain)
Per Austrin (KTH Royal Institute of Technology)
Gregor Behnke (Ulm University)
Jeroen Bransen (Chordify)
Egor Dranischnikow (CST AG, Darmstadt)
Tommy Färnqvist (Swedish National Forensic Centre)
Jim Grimmett (LifeJak)
Eduard Kalinicenko (Palantir)
Robin Lee (Google)
Lukáš Poláček (Google)
Tobias Werth (Google)

NWERC 2016 solutions



Big thanks to our test solvers

Michal Forišek (Comenius University)
Barış Kaya (Google)
Jan Kuipers (AppTornado)
Alexey Zayakin (University of Latvia)

NWERC 2016 solutions



E – Exam Redistribution

Problem
Given s1, . . . , sn, find safe ordering of them.

Solution

1 There are two ways in which an ordering can fail to be safe:

(a) There is a chance that someone gets their own exam
Observation 1: this happens when size of first room larger
than sum of other room sizes

(b) We don’t have enough in our pile when entering a room
Observation 2: this happens when size of first room smaller
than some other room

2 ⇒ Possible if max si ≥ 1
2
∑

si , and any ordering which puts a
largest room first works.

Statistics: 143 submissions, 112 accepted
Problem Author: Per Austrin NWERC 2016 solutions



E – Exam Redistribution

Problem
Given s1, . . . , sn, find safe ordering of them.

Solution
1 There are two ways in which an ordering can fail to be safe:

(a) There is a chance that someone gets their own exam
Observation 1: this happens when size of first room larger
than sum of other room sizes

(b) We don’t have enough in our pile when entering a room
Observation 2: this happens when size of first room smaller
than some other room

2 ⇒ Possible if max si ≥ 1
2
∑

si , and any ordering which puts a
largest room first works.

Statistics: 143 submissions, 112 accepted
Problem Author: Per Austrin NWERC 2016 solutions



E – Exam Redistribution

Problem
Given s1, . . . , sn, find safe ordering of them.

Solution
1 There are two ways in which an ordering can fail to be safe:

(a) There is a chance that someone gets their own exam
Observation 1: this happens when size of first room larger
than sum of other room sizes

(b) We don’t have enough in our pile when entering a room
Observation 2: this happens when size of first room smaller
than some other room

2 ⇒ Possible if max si ≥ 1
2
∑

si , and any ordering which puts a
largest room first works.

Statistics: 143 submissions, 112 accepted
Problem Author: Per Austrin NWERC 2016 solutions



E – Exam Redistribution

Problem
Given s1, . . . , sn, find safe ordering of them.

Solution
1 There are two ways in which an ordering can fail to be safe:

(a) There is a chance that someone gets their own exam
Observation 1: this happens when size of first room larger
than sum of other room sizes

(b) We don’t have enough in our pile when entering a room
Observation 2: this happens when size of first room smaller
than some other room

2 ⇒ Possible if max si ≥ 1
2
∑

si , and any ordering which puts a
largest room first works.

Statistics: 143 submissions, 112 accepted
Problem Author: Per Austrin NWERC 2016 solutions



E – Exam Redistribution

Problem
Given s1, . . . , sn, find safe ordering of them.

Solution
1 There are two ways in which an ordering can fail to be safe:

(a) There is a chance that someone gets their own exam
Observation 1: this happens when size of first room larger
than sum of other room sizes

(b) We don’t have enough in our pile when entering a room
Observation 2: this happens when size of first room smaller
than some other room

2 ⇒ Possible if max si ≥ 1
2
∑

si , and any ordering which puts a
largest room first works.

Statistics: 143 submissions, 112 accepted
Problem Author: Per Austrin NWERC 2016 solutions



H – Hamiltonian Hypercube

Problem
Given two code-words a and b of an n-bit Gray Code, compute the
number of code-words between them.

Solution

1 Output does not depend on n

2 Reduce the problem to determining the index of a in the
Gray-Code.
dist(a, b) = ind(b)− ind(a)− 1

3 Can be solved by a simple recursion:

ind(x) =

{
ind(y) if x = 0y
2len(x) − ind(y)− 1 if x = 1y

Statistics: 220 submissions, 98 accepted

Problem Author: Gregor Behnke NWERC 2016 solutions



H – Hamiltonian Hypercube

Problem
Given two code-words a and b of an n-bit Gray Code, compute the
number of code-words between them.

Solution
1 Output does not depend on n

2 Reduce the problem to determining the index of a in the
Gray-Code.
dist(a, b) = ind(b)− ind(a)− 1

3 Can be solved by a simple recursion:

ind(x) =

{
ind(y) if x = 0y
2len(x) − ind(y)− 1 if x = 1y

Statistics: 220 submissions, 98 accepted

Problem Author: Gregor Behnke NWERC 2016 solutions



H – Hamiltonian Hypercube

Problem
Given two code-words a and b of an n-bit Gray Code, compute the
number of code-words between them.

Solution
1 Output does not depend on n

2 Reduce the problem to determining the index of a in the
Gray-Code.
dist(a, b) = ind(b)− ind(a)− 1

3 Can be solved by a simple recursion:

ind(x) =

{
ind(y) if x = 0y
2len(x) − ind(y)− 1 if x = 1y

Statistics: 220 submissions, 98 accepted

Problem Author: Gregor Behnke NWERC 2016 solutions



H – Hamiltonian Hypercube

Problem
Given two code-words a and b of an n-bit Gray Code, compute the
number of code-words between them.

Solution
1 Output does not depend on n

2 Reduce the problem to determining the index of a in the
Gray-Code.
dist(a, b) = ind(b)− ind(a)− 1

3 Can be solved by a simple recursion:

ind(x) =

{
ind(y) if x = 0y
2len(x) − ind(y)− 1 if x = 1y

Statistics: 220 submissions, 98 accepted

Problem Author: Gregor Behnke NWERC 2016 solutions



C – Careful Ascent

Problem
Given target’s coordinates (x , y) and descriptions of shields and
taking into account the interference of the shields, what is the right
horizontal velocity for hitting the target?

y

x

40

90

140

100

sh
ie
ld

(x , y)

α =?

Problem Author: Egor Dranischnikow NWERC 2016 solutions



C – Careful Ascent

Solution
1 Easy, if there are no shields: vhor = cot(α) = x/y .
2 Replace every shield (li , hi , fi ) by a layer with effective

thickness teffi
= fi · (ui − li ) and calculate yeff .

3 vhor = cot(α) = x/yeff .

y

x

40

90

140

100

sh
ie
ld

(x , y)

(x , yeff )

α =?

teff

t

t − teff

Problem Author: Egor Dranischnikow NWERC 2016 solutions



C – Careful Ascent

Alternative solution
1 For given vhor , simulate the flight.
2 Adjust vhor depending on whether Mal is too far to the right

or too far to the left from the Firefly.
3 Use binary search to reach the needed precision fast enough.

Statistics: 180 submissions, 110 accepted

Problem Author: Egor Dranischnikow NWERC 2016 solutions



F – Free Weights

Problem
Given two rows of weights, find the largest weight that must be
moved so that all weights can be put into pairs.

Solution

1 Decision problem: can we solve it by moving all weights
smaller than or equal to M?

Remove all weights that are smaller than M.
For every i , W2i should be equal to W2i+1.
Otherwise, it isn’t possible.

2 So binary search on the maximum weight moved.

Possible pitfalls
1 Not checking for weights split across rows.
2 Trying to put the weights into ascending order.

Statistics: 285 submissions, 80 accepted

Problem Author: Robin Lee NWERC 2016 solutions



F – Free Weights

Problem
Given two rows of weights, find the largest weight that must be
moved so that all weights can be put into pairs.

Solution
1 Decision problem: can we solve it by moving all weights

smaller than or equal to M?

Remove all weights that are smaller than M.
For every i , W2i should be equal to W2i+1.
Otherwise, it isn’t possible.

2 So binary search on the maximum weight moved.

Possible pitfalls
1 Not checking for weights split across rows.
2 Trying to put the weights into ascending order.

Statistics: 285 submissions, 80 accepted

Problem Author: Robin Lee NWERC 2016 solutions



F – Free Weights

Problem
Given two rows of weights, find the largest weight that must be
moved so that all weights can be put into pairs.

Solution
1 Decision problem: can we solve it by moving all weights

smaller than or equal to M?
Remove all weights that are smaller than M.

For every i , W2i should be equal to W2i+1.
Otherwise, it isn’t possible.

2 So binary search on the maximum weight moved.

Possible pitfalls
1 Not checking for weights split across rows.
2 Trying to put the weights into ascending order.

Statistics: 285 submissions, 80 accepted

Problem Author: Robin Lee NWERC 2016 solutions



F – Free Weights

Problem
Given two rows of weights, find the largest weight that must be
moved so that all weights can be put into pairs.

Solution
1 Decision problem: can we solve it by moving all weights

smaller than or equal to M?
Remove all weights that are smaller than M.
For every i , W2i should be equal to W2i+1.

Otherwise, it isn’t possible.
2 So binary search on the maximum weight moved.

Possible pitfalls
1 Not checking for weights split across rows.
2 Trying to put the weights into ascending order.

Statistics: 285 submissions, 80 accepted

Problem Author: Robin Lee NWERC 2016 solutions



F – Free Weights

Problem
Given two rows of weights, find the largest weight that must be
moved so that all weights can be put into pairs.

Solution
1 Decision problem: can we solve it by moving all weights

smaller than or equal to M?
Remove all weights that are smaller than M.
For every i , W2i should be equal to W2i+1.
Otherwise, it isn’t possible.

2 So binary search on the maximum weight moved.

Possible pitfalls
1 Not checking for weights split across rows.
2 Trying to put the weights into ascending order.

Statistics: 285 submissions, 80 accepted

Problem Author: Robin Lee NWERC 2016 solutions



F – Free Weights

Problem
Given two rows of weights, find the largest weight that must be
moved so that all weights can be put into pairs.

Solution
1 Decision problem: can we solve it by moving all weights

smaller than or equal to M?
Remove all weights that are smaller than M.
For every i , W2i should be equal to W2i+1.
Otherwise, it isn’t possible.

2 So binary search on the maximum weight moved.

Possible pitfalls
1 Not checking for weights split across rows.
2 Trying to put the weights into ascending order.

Statistics: 285 submissions, 80 accepted

Problem Author: Robin Lee NWERC 2016 solutions



F – Free Weights

Problem
Given two rows of weights, find the largest weight that must be
moved so that all weights can be put into pairs.

Solution
1 Decision problem: can we solve it by moving all weights

smaller than or equal to M?
Remove all weights that are smaller than M.
For every i , W2i should be equal to W2i+1.
Otherwise, it isn’t possible.

2 So binary search on the maximum weight moved.

Possible pitfalls
1 Not checking for weights split across rows.
2 Trying to put the weights into ascending order.

Statistics: 285 submissions, 80 accepted
Problem Author: Robin Lee NWERC 2016 solutions



I – Iron and Coal

Problem
Given a game board with interconnected cells and resources, find an
optimal way to seize coal and ore, starting with a single origin cell.

Solution: Reduction to Steiner tree
1 Every cell on the board is a node.
2 Add directed edges to accessible neighbors with weight 0.
3 All nodes with resource “coal” have a directed edge with

weight 0 to a super-node C .
4 All nodes with resource “ore” have a directed edge with weight

0 to a super-node 0.
5 Find a minimal Steiner tree for nodes O, C , and the node

corresponding to the origin cell.

Problem Author: Egor Dranischnikow NWERC 2016 solutions



I – Iron and Coal

A possible resulting graph with a minimal Steiner tree marked with
red:

orig
1

coal
1

coal

1

coal

1

1
ore

1

ore

1

ore

1

C
0

0

0

O
0

0

0

Problem Author: Egor Dranischnikow NWERC 2016 solutions



I – Iron and Coal

Solution: Polynomial Algorithm
1 Normally, finding a minimal Steiner tree is a NP-complete

problem.
2 In this special case with three nodes, a polynomial algorithm is

possible:
find distances from the origin node to every other node via bfs.
find distances from the super-node O to every other node via
bfs on the reversed graph.
the same for the super-node C .
find a node with the minimal sum of distances to O and to C
and from the origin node.

3 Running time: O(n), with n - number of cells on the board.

Statistics: 158 submissions, 56 accepted

Problem Author: Egor Dranischnikow NWERC 2016 solutions



A – Arranging Hat

Problem
Given a list of decimal numbers, how many digits need to be
substituted to make the list lexicographically sorted?

Problem Author: Robin Lee NWERC 2016 solutions



A – Arranging Hat

Solution
1 Choose some quantity X and for all of the first X numbers,

set the first digit to 0.

2 Now we have two subproblems to recurse into:

Sort the remainder of the numbers starting with 0.
Sort all of the other numbers, using digits greater than or
equal to 0 as prefixes.

3 We look at every subrange of numbers, every starting index,
and every starting digit.

4 With memoisation, overall complexity is O(N3 ·M).

Possible pitfalls
1 Slow python recursion

Problem Author: Robin Lee NWERC 2016 solutions



A – Arranging Hat

Solution
1 Choose some quantity X and for all of the first X numbers,

set the first digit to 0.
2 Now we have two subproblems to recurse into:

Sort the remainder of the numbers starting with 0.
Sort all of the other numbers, using digits greater than or
equal to 0 as prefixes.

3 We look at every subrange of numbers, every starting index,
and every starting digit.

4 With memoisation, overall complexity is O(N3 ·M).

Possible pitfalls
1 Slow python recursion

Problem Author: Robin Lee NWERC 2016 solutions



A – Arranging Hat

Solution
1 Choose some quantity X and for all of the first X numbers,

set the first digit to 0.
2 Now we have two subproblems to recurse into:

Sort the remainder of the numbers starting with 0.

Sort all of the other numbers, using digits greater than or
equal to 0 as prefixes.

3 We look at every subrange of numbers, every starting index,
and every starting digit.

4 With memoisation, overall complexity is O(N3 ·M).

Possible pitfalls
1 Slow python recursion

Problem Author: Robin Lee NWERC 2016 solutions



A – Arranging Hat

Solution
1 Choose some quantity X and for all of the first X numbers,

set the first digit to 0.
2 Now we have two subproblems to recurse into:

Sort the remainder of the numbers starting with 0.
Sort all of the other numbers, using digits greater than or
equal to 0 as prefixes.

3 We look at every subrange of numbers, every starting index,
and every starting digit.

4 With memoisation, overall complexity is O(N3 ·M).

Possible pitfalls
1 Slow python recursion

Problem Author: Robin Lee NWERC 2016 solutions



A – Arranging Hat

Solution
1 Choose some quantity X and for all of the first X numbers,

set the first digit to 0.
2 Now we have two subproblems to recurse into:

Sort the remainder of the numbers starting with 0.
Sort all of the other numbers, using digits greater than or
equal to 0 as prefixes.

3 We look at every subrange of numbers, every starting index,
and every starting digit.

4 With memoisation, overall complexity is O(N3 ·M).

Possible pitfalls
1 Slow python recursion

Problem Author: Robin Lee NWERC 2016 solutions



A – Arranging Hat

Solution
1 Choose some quantity X and for all of the first X numbers,

set the first digit to 0.
2 Now we have two subproblems to recurse into:

Sort the remainder of the numbers starting with 0.
Sort all of the other numbers, using digits greater than or
equal to 0 as prefixes.

3 We look at every subrange of numbers, every starting index,
and every starting digit.

4 With memoisation, overall complexity is O(N3 ·M).

Possible pitfalls
1 Slow python recursion

Problem Author: Robin Lee NWERC 2016 solutions



A – Arranging Hat

Solution
1 Choose some quantity X and for all of the first X numbers,

set the first digit to 0.
2 Now we have two subproblems to recurse into:

Sort the remainder of the numbers starting with 0.
Sort all of the other numbers, using digits greater than or
equal to 0 as prefixes.

3 We look at every subrange of numbers, every starting index,
and every starting digit.

4 With memoisation, overall complexity is O(N3 ·M).

Possible pitfalls
1 Slow python recursion

Problem Author: Robin Lee NWERC 2016 solutions



A – Arranging Hat

Alternative dynamic programming solution
1 Let’s consider whole numbers without splitting them by digits.
2 ai ,j = the minimum number obtainable for i-th number, if we

made j changes on the first i numbers.
3 From any state we can try changing some amount of digits in

the i + 1-th number.
4 Then we can greedily in O(M) obtain the smallest number we

can get from i + 1-th number using fixed number of changes.
5 If it’s greater or equal than ai ,j – that’s a valid transition.
6 O(N2 ·M) for the state and O(M2) for the transition.
7 But the answer is never going to be more than N · log10 N.
8 O(N2 · log10 N) for the state and O(N · log10 N ·M) for the

transition.

Statistics: 45 submissions, 12 accepted
Problem Author: Robin Lee NWERC 2016 solutions



J – Jupiter Orbiter

Problem
There are Q FIFO-queue with capacities ci and N timeslots to
remove data from the queues. The maximum amount removable di

is given for each timeslot.
Each queue gets a given amount of data prior each such timeslot.
Is it possible to remove data from the queues in such a way that
after the last timeslot no data is left in the queues?

Solution

1 Model the problem as a graph and run Max-Flow.
2 Check whether the flow is equal to the total amount of data

generated.

Problem Author: Gregor Behnke NWERC 2016 solutions



J – Jupiter Orbiter

Problem
There are Q FIFO-queue with capacities ci and N timeslots to
remove data from the queues. The maximum amount removable di

is given for each timeslot.
Each queue gets a given amount of data prior each such timeslot.
Is it possible to remove data from the queues in such a way that
after the last timeslot no data is left in the queues?

Solution
1 Model the problem as a graph and run Max-Flow.

2 Check whether the flow is equal to the total amount of data
generated.

Problem Author: Gregor Behnke NWERC 2016 solutions



J – Jupiter Orbiter

Problem
There are Q FIFO-queue with capacities ci and N timeslots to
remove data from the queues. The maximum amount removable di

is given for each timeslot.
Each queue gets a given amount of data prior each such timeslot.
Is it possible to remove data from the queues in such a way that
after the last timeslot no data is left in the queues?

Solution
1 Model the problem as a graph and run Max-Flow.
2 Check whether the flow is equal to the total amount of data

generated.

Problem Author: Gregor Behnke NWERC 2016 solutions



J – Jupiter Orbiter

t

s

... ... ... ...

...

...

... ...

c1

cQ

c1

cQ

c1

cQ

∞

∞

d1

∞

∞

d2

∞

∞

dN

∞

∞

∞

∞

a1,1 a2,1 a3,1

a1,3
a2,3 a3,3

Problem Author: Gregor Behnke NWERC 2016 solutions



J – Jupiter Orbiter

Alternative solution
1 Simulate receiving of all the data.
2 Whenever the queue overfills, cut off the excess and record

that you have to downlink that amount of data from that
queue until this time moment – these form restrictions.

3 Simulate the whole process the second time.
4 You fail if and only if you violate one of the restrictions.
5 As such, whenever we have the opportunity to downlink data,

we should downlink data to satisfy the restriction with the
earliest possible time deadline.

6 So we can just downlink the data greedily based on sorted
restriction list.

Statistics: 188 submissions, 36 accepted

Problem Author: Gregor Behnke NWERC 2016 solutions



K – Kiwi Trees

Problem
Given a polygon with special properties, can you place 2 disjoint
circles inside the polygon?

Solution
1 Every polygon with n ≥ 4 has two ears.

2 Angle in ear between 18 and 144 degrees. Two sides of the
angle are at least 30 meters.

3 Each ear can accommodate a tree of radius ∼ 4008 mm.
4 Special case n = 3 (triangle). Can output “impossible”.

Statistics: 59 submissions, 9 accepted
Problem Author: Lukáš Poláček NWERC 2016 solutions



K – Kiwi Trees

Problem
Given a polygon with special properties, can you place 2 disjoint
circles inside the polygon?

Solution
1 Every polygon with n ≥ 4 has two ears.

2 Angle in ear between 18 and 144 degrees. Two sides of the
angle are at least 30 meters.

3 Each ear can accommodate a tree of radius ∼ 4008 mm.
4 Special case n = 3 (triangle). Can output “impossible”.

Statistics: 59 submissions, 9 accepted
Problem Author: Lukáš Poláček NWERC 2016 solutions



K – Kiwi Trees

Problem
Given a polygon with special properties, can you place 2 disjoint
circles inside the polygon?

Solution
1 Every polygon with n ≥ 4 has two ears.

2 Angle in ear between 18 and 144 degrees. Two sides of the
angle are at least 30 meters.

3 Each ear can accommodate a tree of radius ∼ 4008 mm.

4 Special case n = 3 (triangle). Can output “impossible”.

Statistics: 59 submissions, 9 accepted
Problem Author: Lukáš Poláček NWERC 2016 solutions



K – Kiwi Trees

Problem
Given a polygon with special properties, can you place 2 disjoint
circles inside the polygon?

Solution
1 Every polygon with n ≥ 4 has two ears.

2 Angle in ear between 18 and 144 degrees. Two sides of the
angle are at least 30 meters.

3 Each ear can accommodate a tree of radius ∼ 4008 mm.
4 Special case n = 3 (triangle). Can output “impossible”.

Statistics: 59 submissions, 9 accepted
Problem Author: Lukáš Poláček NWERC 2016 solutions



B – British Menu

Problem
Given a directed graph G = (V ,E ), were every cycle contains at
most 5 different nodes, compute the length of the longest path.

Solution

1 This problem is in general NP-complete, but can be solved for
DAGs in O(n +m) using DP

2 Form the cycle property follows that every SCC of G contains
at most 5 vertices.

3 Solve longest path for each SCC – from every vertex to every
other – by complete exploration (O(n!) is sufficiently fast)

4 Reduce all SCCs to a single vertex
5 Now the graph is a DAG, so run DP (and keep in mind how

the paths in each SCC look like)

Statistics: 52 submissions, 8 accepted
Problem Author: Gregor Behnke NWERC 2016 solutions



B – British Menu

Problem
Given a directed graph G = (V ,E ), were every cycle contains at
most 5 different nodes, compute the length of the longest path.

Solution
1 This problem is in general NP-complete, but can be solved for

DAGs in O(n +m) using DP

2 Form the cycle property follows that every SCC of G contains
at most 5 vertices.

3 Solve longest path for each SCC – from every vertex to every
other – by complete exploration (O(n!) is sufficiently fast)

4 Reduce all SCCs to a single vertex
5 Now the graph is a DAG, so run DP (and keep in mind how

the paths in each SCC look like)

Statistics: 52 submissions, 8 accepted
Problem Author: Gregor Behnke NWERC 2016 solutions



B – British Menu

Problem
Given a directed graph G = (V ,E ), were every cycle contains at
most 5 different nodes, compute the length of the longest path.

Solution
1 This problem is in general NP-complete, but can be solved for

DAGs in O(n +m) using DP
2 Form the cycle property follows that every SCC of G contains

at most 5 vertices.

3 Solve longest path for each SCC – from every vertex to every
other – by complete exploration (O(n!) is sufficiently fast)

4 Reduce all SCCs to a single vertex
5 Now the graph is a DAG, so run DP (and keep in mind how

the paths in each SCC look like)

Statistics: 52 submissions, 8 accepted
Problem Author: Gregor Behnke NWERC 2016 solutions



B – British Menu

Problem
Given a directed graph G = (V ,E ), were every cycle contains at
most 5 different nodes, compute the length of the longest path.

Solution
1 This problem is in general NP-complete, but can be solved for

DAGs in O(n +m) using DP
2 Form the cycle property follows that every SCC of G contains

at most 5 vertices.
3 Solve longest path for each SCC – from every vertex to every

other – by complete exploration (O(n!) is sufficiently fast)

4 Reduce all SCCs to a single vertex
5 Now the graph is a DAG, so run DP (and keep in mind how

the paths in each SCC look like)

Statistics: 52 submissions, 8 accepted
Problem Author: Gregor Behnke NWERC 2016 solutions



B – British Menu

Problem
Given a directed graph G = (V ,E ), were every cycle contains at
most 5 different nodes, compute the length of the longest path.

Solution
1 This problem is in general NP-complete, but can be solved for

DAGs in O(n +m) using DP
2 Form the cycle property follows that every SCC of G contains

at most 5 vertices.
3 Solve longest path for each SCC – from every vertex to every

other – by complete exploration (O(n!) is sufficiently fast)
4 Reduce all SCCs to a single vertex

5 Now the graph is a DAG, so run DP (and keep in mind how
the paths in each SCC look like)

Statistics: 52 submissions, 8 accepted
Problem Author: Gregor Behnke NWERC 2016 solutions



B – British Menu

Problem
Given a directed graph G = (V ,E ), were every cycle contains at
most 5 different nodes, compute the length of the longest path.

Solution
1 This problem is in general NP-complete, but can be solved for

DAGs in O(n +m) using DP
2 Form the cycle property follows that every SCC of G contains

at most 5 vertices.
3 Solve longest path for each SCC – from every vertex to every

other – by complete exploration (O(n!) is sufficiently fast)
4 Reduce all SCCs to a single vertex
5 Now the graph is a DAG, so run DP (and keep in mind how

the paths in each SCC look like)

Statistics: 52 submissions, 8 accepted
Problem Author: Gregor Behnke NWERC 2016 solutions



D – Driving in Optimistan

Problem
Given distances between all leaves of a tree, find the average
distance of road signs placed every 1 kilometer of a road.

Solution, part 1
Whole tree with all traffic signs is too big; only reconstruct
leaves and intersections:

1 Start with each port town being a separate node.
2 Sort port town pairs in ascending order by distance.
3 Go through the pairs and merge the two trees containing both

port towns by adding a new root.

Statistics: 6 submissions, 2 accepted

Problem Author: Lukáš Poláček NWERC 2016 solutions



D – Driving in Optimistan

Problem
Given distances between all leaves of a tree, find the average
distance of road signs placed every 1 kilometer of a road.

Solution, part 2
For each subtree T with root r , calculate: average length of
shortest paths going through r with both ends (A2

r ) in T and
with one end (A1

r ) in T .
Both values A1

r and A2
r can be calculated using values A1 of all

children of r and their distances from r .

Statistics: 6 submissions, 2 accepted

Problem Author: Lukáš Poláček NWERC 2016 solutions



G – Gotta Nudge ’Em All

Problem
Given a timed list of caught Nudgémon, figure out when to activate
an item (which doubles the XP for catching Nudgémon and allows
to evolve Nudgémon for additional XP) so that XP is maximized.

Problem Author: Eduard Kalinicenko NWERC 2016 solutions



G – Gotta Nudge ’Em All

Solution
1 Use sliding window for Egg on caught Nudgémon.

2 XP gained between Nudgémon families are independent.
3 After every catch recalculate XP for corresponding family.
4 Should only evolve the weakest Nudgémon in the family.
5 Should only transfer the strongest Nudgémon in the family.
6 Hence, can greedily calculate the maximum XP for the family

in O(N) by grouping together Nudgémon of the same type.
7 This can be sped up to O(log2N) (or even O(logN)) by using

segment trees for a total complexity of O(N · log2N).
8 Careful with transfers on the same level we’re currently

evolving – for the constraints given easier to start with −1
candies, have 4 for every catch and forget about transfers.

Problem Author: Eduard Kalinicenko NWERC 2016 solutions



G – Gotta Nudge ’Em All

Solution
1 Use sliding window for Egg on caught Nudgémon.
2 XP gained between Nudgémon families are independent.

3 After every catch recalculate XP for corresponding family.
4 Should only evolve the weakest Nudgémon in the family.
5 Should only transfer the strongest Nudgémon in the family.
6 Hence, can greedily calculate the maximum XP for the family

in O(N) by grouping together Nudgémon of the same type.
7 This can be sped up to O(log2N) (or even O(logN)) by using

segment trees for a total complexity of O(N · log2N).
8 Careful with transfers on the same level we’re currently

evolving – for the constraints given easier to start with −1
candies, have 4 for every catch and forget about transfers.

Problem Author: Eduard Kalinicenko NWERC 2016 solutions



G – Gotta Nudge ’Em All

Solution
1 Use sliding window for Egg on caught Nudgémon.
2 XP gained between Nudgémon families are independent.
3 After every catch recalculate XP for corresponding family.

4 Should only evolve the weakest Nudgémon in the family.
5 Should only transfer the strongest Nudgémon in the family.
6 Hence, can greedily calculate the maximum XP for the family

in O(N) by grouping together Nudgémon of the same type.
7 This can be sped up to O(log2N) (or even O(logN)) by using

segment trees for a total complexity of O(N · log2N).
8 Careful with transfers on the same level we’re currently

evolving – for the constraints given easier to start with −1
candies, have 4 for every catch and forget about transfers.

Problem Author: Eduard Kalinicenko NWERC 2016 solutions



G – Gotta Nudge ’Em All

Solution
1 Use sliding window for Egg on caught Nudgémon.
2 XP gained between Nudgémon families are independent.
3 After every catch recalculate XP for corresponding family.
4 Should only evolve the weakest Nudgémon in the family.

5 Should only transfer the strongest Nudgémon in the family.
6 Hence, can greedily calculate the maximum XP for the family

in O(N) by grouping together Nudgémon of the same type.
7 This can be sped up to O(log2N) (or even O(logN)) by using

segment trees for a total complexity of O(N · log2N).
8 Careful with transfers on the same level we’re currently

evolving – for the constraints given easier to start with −1
candies, have 4 for every catch and forget about transfers.

Problem Author: Eduard Kalinicenko NWERC 2016 solutions



G – Gotta Nudge ’Em All

Solution
1 Use sliding window for Egg on caught Nudgémon.
2 XP gained between Nudgémon families are independent.
3 After every catch recalculate XP for corresponding family.
4 Should only evolve the weakest Nudgémon in the family.
5 Should only transfer the strongest Nudgémon in the family.

6 Hence, can greedily calculate the maximum XP for the family
in O(N) by grouping together Nudgémon of the same type.

7 This can be sped up to O(log2N) (or even O(logN)) by using
segment trees for a total complexity of O(N · log2N).

8 Careful with transfers on the same level we’re currently
evolving – for the constraints given easier to start with −1
candies, have 4 for every catch and forget about transfers.

Problem Author: Eduard Kalinicenko NWERC 2016 solutions



G – Gotta Nudge ’Em All

Solution
1 Use sliding window for Egg on caught Nudgémon.
2 XP gained between Nudgémon families are independent.
3 After every catch recalculate XP for corresponding family.
4 Should only evolve the weakest Nudgémon in the family.
5 Should only transfer the strongest Nudgémon in the family.
6 Hence, can greedily calculate the maximum XP for the family

in O(N) by grouping together Nudgémon of the same type.

7 This can be sped up to O(log2N) (or even O(logN)) by using
segment trees for a total complexity of O(N · log2N).

8 Careful with transfers on the same level we’re currently
evolving – for the constraints given easier to start with −1
candies, have 4 for every catch and forget about transfers.

Problem Author: Eduard Kalinicenko NWERC 2016 solutions



G – Gotta Nudge ’Em All

Solution
1 Use sliding window for Egg on caught Nudgémon.
2 XP gained between Nudgémon families are independent.
3 After every catch recalculate XP for corresponding family.
4 Should only evolve the weakest Nudgémon in the family.
5 Should only transfer the strongest Nudgémon in the family.
6 Hence, can greedily calculate the maximum XP for the family

in O(N) by grouping together Nudgémon of the same type.
7 This can be sped up to O(log2N) (or even O(logN)) by using

segment trees for a total complexity of O(N · log2N).

8 Careful with transfers on the same level we’re currently
evolving – for the constraints given easier to start with −1
candies, have 4 for every catch and forget about transfers.

Problem Author: Eduard Kalinicenko NWERC 2016 solutions



G – Gotta Nudge ’Em All

Solution
1 Use sliding window for Egg on caught Nudgémon.
2 XP gained between Nudgémon families are independent.
3 After every catch recalculate XP for corresponding family.
4 Should only evolve the weakest Nudgémon in the family.
5 Should only transfer the strongest Nudgémon in the family.
6 Hence, can greedily calculate the maximum XP for the family

in O(N) by grouping together Nudgémon of the same type.
7 This can be sped up to O(log2N) (or even O(logN)) by using

segment trees for a total complexity of O(N · log2N).
8 Careful with transfers on the same level we’re currently

evolving – for the constraints given easier to start with −1
candies, have 4 for every catch and forget about transfers.

Problem Author: Eduard Kalinicenko NWERC 2016 solutions



G – Gotta Nudge ’Em All

Alternative solution
1 When sliding egg window, keep track of all Nudgémons and

their current level

2 Forget about transfers – amount of candy after X catches is
effectively 4X − 1

3 When catching a new Nudgémon, try to increase number of
upgrades in its family by repeating the following:

1 If can afford cheapest currently available upgrade, buy it.
2 Otherwise, if most expensive upgrade bought cost more than

cheapest available one, then “undo” the expensive one.

4 Using two maps, can easily do each iteration in O(log n) time.
5 Because of the constant amount of candies per catch, the

total number of iterations is O(n).

Statistics: 6 submissions, 2 accepted

Problem Author: Eduard Kalinicenko NWERC 2016 solutions



G – Gotta Nudge ’Em All

Alternative solution
1 When sliding egg window, keep track of all Nudgémons and

their current level
2 Forget about transfers – amount of candy after X catches is

effectively 4X − 1

3 When catching a new Nudgémon, try to increase number of
upgrades in its family by repeating the following:

1 If can afford cheapest currently available upgrade, buy it.
2 Otherwise, if most expensive upgrade bought cost more than

cheapest available one, then “undo” the expensive one.

4 Using two maps, can easily do each iteration in O(log n) time.
5 Because of the constant amount of candies per catch, the

total number of iterations is O(n).

Statistics: 6 submissions, 2 accepted

Problem Author: Eduard Kalinicenko NWERC 2016 solutions



G – Gotta Nudge ’Em All

Alternative solution
1 When sliding egg window, keep track of all Nudgémons and

their current level
2 Forget about transfers – amount of candy after X catches is

effectively 4X − 1
3 When catching a new Nudgémon, try to increase number of

upgrades in its family by repeating the following:

1 If can afford cheapest currently available upgrade, buy it.
2 Otherwise, if most expensive upgrade bought cost more than

cheapest available one, then “undo” the expensive one.
4 Using two maps, can easily do each iteration in O(log n) time.
5 Because of the constant amount of candies per catch, the

total number of iterations is O(n).

Statistics: 6 submissions, 2 accepted

Problem Author: Eduard Kalinicenko NWERC 2016 solutions



G – Gotta Nudge ’Em All

Alternative solution
1 When sliding egg window, keep track of all Nudgémons and

their current level
2 Forget about transfers – amount of candy after X catches is

effectively 4X − 1
3 When catching a new Nudgémon, try to increase number of

upgrades in its family by repeating the following:
1 If can afford cheapest currently available upgrade, buy it.

2 Otherwise, if most expensive upgrade bought cost more than
cheapest available one, then “undo” the expensive one.

4 Using two maps, can easily do each iteration in O(log n) time.
5 Because of the constant amount of candies per catch, the

total number of iterations is O(n).

Statistics: 6 submissions, 2 accepted

Problem Author: Eduard Kalinicenko NWERC 2016 solutions



G – Gotta Nudge ’Em All

Alternative solution
1 When sliding egg window, keep track of all Nudgémons and

their current level
2 Forget about transfers – amount of candy after X catches is

effectively 4X − 1
3 When catching a new Nudgémon, try to increase number of

upgrades in its family by repeating the following:
1 If can afford cheapest currently available upgrade, buy it.
2 Otherwise, if most expensive upgrade bought cost more than

cheapest available one, then “undo” the expensive one.

4 Using two maps, can easily do each iteration in O(log n) time.
5 Because of the constant amount of candies per catch, the

total number of iterations is O(n).

Statistics: 6 submissions, 2 accepted

Problem Author: Eduard Kalinicenko NWERC 2016 solutions



G – Gotta Nudge ’Em All

Alternative solution
1 When sliding egg window, keep track of all Nudgémons and

their current level
2 Forget about transfers – amount of candy after X catches is

effectively 4X − 1
3 When catching a new Nudgémon, try to increase number of

upgrades in its family by repeating the following:
1 If can afford cheapest currently available upgrade, buy it.
2 Otherwise, if most expensive upgrade bought cost more than

cheapest available one, then “undo” the expensive one.
4 Using two maps, can easily do each iteration in O(log n) time.

5 Because of the constant amount of candies per catch, the
total number of iterations is O(n).

Statistics: 6 submissions, 2 accepted

Problem Author: Eduard Kalinicenko NWERC 2016 solutions



G – Gotta Nudge ’Em All

Alternative solution
1 When sliding egg window, keep track of all Nudgémons and

their current level
2 Forget about transfers – amount of candy after X catches is

effectively 4X − 1
3 When catching a new Nudgémon, try to increase number of

upgrades in its family by repeating the following:
1 If can afford cheapest currently available upgrade, buy it.
2 Otherwise, if most expensive upgrade bought cost more than

cheapest available one, then “undo” the expensive one.
4 Using two maps, can easily do each iteration in O(log n) time.
5 Because of the constant amount of candies per catch, the

total number of iterations is O(n).

Statistics: 6 submissions, 2 accepted

Problem Author: Eduard Kalinicenko NWERC 2016 solutions



Random numbers produced by the jury

1081 number of posts made in the jury’s forum.
(NWERC 2015: 1217)

964 commits made to the problem set repository.
(NWERC 2015: 915)

370 number of lines of code used in total by the shortest judge
solutions to solve the entire problem set.
(NWERC 2015: 416)

20.6 average number of jury solutions per problem, including
incorrect ones.
(NWERC 2015: 16.6)

NWERC 2016 solutions


